热门关键词:
首页 综合资讯

7年从0做到1500亿,低调崛起的动力电池独角兽:宁德时代

导读: 比亚迪名声在外,比起比亚迪,宁德时代的确低调太多,以至于很多人都不知道宁德时代是干什么的。宁德时代成立于2011年,专注于新能源汽车动力电池系统、储能...

比亚迪名声在外,比起比亚迪,宁德时代的确低调太多,以至于很多人都不知道宁德时代是干什么的。

宁德时代成立于2011年,专注于新能源汽车动力电池系统、储能系统的研发、生产和销售,致力于为全球新能源应用提供一流解决方案。主要产品包括动力电池系统、锂电池材料和储能系统,随国内新能源汽车爆发而快速成长。

宁德时代动力电池2017年出货量11.84GWh,全球动力电池市占率17%排名第一。

资料来源:GGII

对于中国市场而言,宁德时代2017年的市场份额为27%,排名第一,同时在截至2017 年底工信部公布的12批新能源车型目录共 3200余款车型,宁德时代拿下其中的500余款车型,占比约16%,是配套车型最多的动力电池厂商。

补贴退坡,政策红利褪去,一众因为趁著补贴的东风成长起来的中小公司,将不再符合国家的战略导向和行业的发展要求。动力电池行业将在未来的一年半的时间窗口中加剧动荡,传统车厂的资本触角也势必触达这个决定他们未来的电池行业。

在沃特玛债务危机之后,整个电池产业一片寒颤。成也公司“败”也公司的比亚迪电池也已经略显乏力,客户仍旧围绕在国内客户间打转。

宁德时代目前已经成了这个时代的孤单英雄。新的行业秩序正在重新建立,宁德时代作为新秩序中最耀眼的明星,其能否扛起中国新能源动力电池的大旗,将会决定着未来的很多东西。

6月11日,宁德时代新能源科技股份有限公司(以下简称“宁德时代”)正式登陆创业板,这也是创业板第728家上市公司,入市后宁德时代多次涨停,20天股价翻番,目前依然强劲。

今天就让我们走进CATL宁德时代的生产车间,一起来看看这块被大众,宝马,奔驰争抢的电芯是怎么制造出来的。

电芯是一个电池系统的最小单元。多个电芯组成一个模组,再多个模组组成一个电池包,这就是车用动力电池的基本结构。电池就像一个储存电能的容器,能储存多少的容量,是靠正极片和负极片所覆载活性物质多少来决定的。正负电极极片的设计需要根据不同车型来量身定做的。正负极材料克容量,活性材料的配比、极片厚度、压实密度等对容量等的影响也至关重要。

活性材料的制浆——搅拌工序

搅拌就是将活性材料通过真空搅拌机搅拌成浆状。这是电池生产的第一道工序,该道工序质量控制的好坏,将直接影响电池的质量和成品合格率。而且该道工序工艺流程复杂,对原料配比,混料步骤,搅拌时间等等都有较高的要求。

这里搅拌的是电池的活性材料

宁德时代的搅拌车间对粉尘严格管控,此外,在搅拌的这一过程中需要严格控制粉尘,以防止粉尘对电池一致性产生影响,在宁德时代的生产车间对粉尘的管控水平相当于医药级别。

将搅拌好的浆料涂在铜箔上——涂布工序

这道工序就是将上一道工序后已经搅拌好的浆料以每分钟80米的速度被均匀涂抹到4000米长的铜箔上下面。而涂布前的铜箔只有6微米厚,可以用“薄如蚕翼”来形容。

涂布工序最重要的是厚度和重量的一致性

涂布至关重要,需要保证极片厚度和重量一致,否则会影响电池的一致性。涂布还必须确保没有颗粒、杂物、粉尘等混入极片。否则会导致电池放电过快,甚至会出现安全隐患。

将铜箔上负极材料压紧再切分——冷压与预分切

在碾压车间里,通过辊将附着有正负极材料的极片进行碾压,一方面让涂覆的材料更紧密,提升能量密度,保证厚度的一致性,另一方面也会进一步管控粉尘和湿度。

冷压就是将铝箔上的正负极材料压紧压实,这对提升能量密度也很重要

将冷压后的极片根据需要生产电池的尺寸进行分切,并充分管控毛刺(这里的毛刺只能在显微镜下看清楚了)的产生,这样做的目的是避免毛刺扎穿隔膜,产生严重的安全隐患。

切出电池上正负极的小耳朵——极耳模切与分条

极耳切模工序就是用模切机形成电芯用的导电极耳。我们知道电池是分正负极的,极耳就是从电芯中将正负极引出来的金属导电体,通俗的说电池正负两极的耳朵,是在进行充放电时的接触点。

而接下来的分条工序就是通过切刀对电池极片进行分切。

极耳模切简单说就是做出正负两极的小耳朵

完成电芯的雏形——卷绕工序

在这里,电池的正极片、负极片、隔离膜以卷绕的方式组合成裸电芯。先进的CCD视觉检测设备可实现自动检测及自动纠偏,确保电芯极片不错位。

卷绕工序后电芯的雏形基本形成

有了CCD视觉检测设备的辅助,CATL宁德时代的电池生产车间在国际上属于自动化程度最高的电池生产车间之一。

去除水分和注入电解液——烘焙与注液

水分是电池系统的大敌,电池烘烤工序就是为了使电池内部水分达标,确保电池在整个寿命周期内具有良好的性能。

为了去除水分,电芯需要进行烘烤

而注液,就是往电芯内注入电解液。电解液就像电芯身体里流动的血液,能量的交换就是带电离子的交换。这些带电离子从电解液中运输过去,到达另一电极,完成充放电过程。电解液的注入量是关键中的关键,如果电解液注入量过大,会导致电池发热甚至直接失效,如果注入量过小,则又影响电池的循环性。

电芯激活的过程——化成

化成是对注液后的电芯进行激活的过程,通过充放电使电芯内部发生化学反应形成SEI膜(SEI膜:是锂电池首次循环时由于电解液和负极材料在固液相间层面上发生反应,所以会形成一层钝化膜,就像给电芯镀了一层面膜。),保证后续电芯在充放电循环过程中的安全、可靠和长循环寿命。将电芯的性能激活,还要经过X-ray监测、绝缘监测、焊接监测,容量测试等一系列“体检过程”。

化成工序当中还包括,对电芯“激活”后第二次灌注电解液、称重、注液口焊接、气密性检测;自放电测试高温老化及静置保证了产品性能。

所有制造好后的每一个电芯单体都具有一个单独的二维码,记录着出生日期,制造环境,性能参数等等。强大的追溯系统可以将任何信息记录在案。如果出现异常,可以随时调取生产信息;同时,这些大数据可以针对性地对后续改良设计做出数据支持。

单个的电芯是不能使用的,只有将众多电芯组合在一起,再加上保护电路和保护壳,才能直接使用。这就是所谓的电池模组。

电池模组(module)是由众多电芯组成的。需要通过严格筛选,将一致性好的电芯按照精密设计组装成为模块化的电池模组,并加装单体电池监控与管理装置。CATL的模组全自动化生产产线,全程由十几个精密机械手协作完成。另外,每一个模组都有自己固定的识别码,出现问题可以实现全过程的追溯。

从简单的一颗电芯到电池包的生产过程也是相当复杂,需要多道工序,一点不比电芯的制造过程简单。

上料

将电芯传送到制定位置,机械手自动抓取送入模组装配线。

在宁德时代的车间内从自动搬运材料到为设备喂料100%实现了自动化

给电芯洗个澡——等离子清洗工序

对每个电芯表面进行清洗(CATL宁德时代采用的是等离子处理技术保证清洁度)。这里采用离子清洁,保证在过程中的污染物不附着在电芯底部。

为什么要采用等离子清洗技术?原因在于,等离子清洗技术是清洗方法中最为彻底的剥离式清洗方式,其最大优势在于清洗后无废液,最大特点是对金属、半导体、氧化物和大多数高分子材料等都能很好地处理,可实现整体和局部以及复杂结构的清洗。

等离子清洗过程

将电芯组合起来——电芯涂胶

电芯组装前,需要表面涂胶。涂胶的作用除了固定作用之外,还能起到绝缘和散热的目的。CATL宁德时代采用国际上最先进的高精度的涂胶设备以及机械手协作,可以以设定轨迹涂胶,同时实时监控涂胶质量,确保涂胶品质,进一步提升了每组不同电池模组的一致性。

电芯的涂胶过程

给电芯建个家——端版与侧板的焊接

电池模组多采用铝制端板和侧板焊接而成,通过机器人进行层压和端板、侧板焊接处理。

线束隔离板装配

焊接监测系统准确定位焊接位置后,绑定线束隔离板物料条码至MES生产调度管理系统,生成单独的编码以便追溯。打码后通过机械手将线束隔离板自动装入模组。

线束隔离板的安装过程

完成电池的串并联——激光焊接

通过自动激光焊接,完成极柱与连接片的连接,实现电池串并联。

下线前的重要一关——下线测试

下线前对模组全性能检查,包括模组电压/电阻、电池单体电压、耐压测试、绝缘电阻测试。标准化的模组设计原理可以定制化匹配不同车型,每个模块还能够安装在车内最佳适合空间和预定位置。

每个电池包包含了若干电池单元,与连接器、控制器和冷却系统集成到一起,外覆铝壳包装。通过螺栓自动固紧,由电气连接器相连,即使发生故障,仅需更换单独的模组即可,不必更换整个电池组,维修工作量和危险性大大降低,更换模组仅需把冷却系统拆解,并不涉及其他构件。

其实,电动汽车从最初的设计阶段就要通过各种方法,最大程度保证安全性。然而,再完美的设计还得经过实践测试的考量。在宁德时代,只有成功通过这些磨练的电池产品,才能被放行使用。

590摄氏度火烧测试

590摄氏度火烧电池是什么概念?我们知道金星的地面温度是464摄氏度,在这样的高温下,铅、锌等金属材料早已熔化。但是,电池组却要在这样的高温下进行“生存”挑战。

在安全性能方面国家的标准是外部燃烧130秒,电池不起火、不爆炸。然而,作为行业领军企业CATL宁德时代却有着更高的要求,不仅做到了外部燃烧130秒后电池依然可以正常工作,的国家标准,更达到了在590摄氏度的情况下连续燃烧1小时后,电池依然没有爆炸危险。

连续21小时振动试验

在日常用车当中,免不了要通过一些颠簸路面,电池产生的振动可能会引发质量不过关的电池产品固定不良,零部件松动,甚至外壳破裂最后引发安全失效的等情况。

所以我们需要模拟车辆震动对电池包产生的影响。振动台用来模拟电池包在实际使用中会遇到的颠簸路况,环境箱用来提供不同的温度环境,充放电机则用以提供充放电的实际工作情况。这三部分组成了带温度带负载的振动测试系统,真实模拟了实车使用时的情景。

宁德时代的一座推力20吨的振动台,用来模拟电池包在实际使用中会遇到的颠簸路况,但其振动强烈程度更甚于实际路况。在试验中,电池包一秒钟要被振动200下,而电芯模组则要被振动2000下。更加严苛的是电池包需要在-30℃至60℃的环境条件下,连续随机振动21小时,这样可等效模拟数十万公里的行车疲劳情况。

加速度达到100G的撞击测试

与振动试验类似,冲击测试用以测试电池包的机械结构稳定,其模拟车辆通过路障时,瞬间颠簸对电池包结构的冲击。此外,在更换电池的过程中有万分之一的几率遇到电池跌落的情况。所谓不怕一万就怕万一,CATL宁德时代将电池从1米高度进行自由落体测试,且保证各项功能依然正常。

在宁德时代的冲击测试中,最高加速度可高达100G。要知道一般人的心脏承受的最大加速度为50G。而目前有记录的,人体能承受的加速度极限约为40G。在如此强烈的加速度冲击下,电池包依然运行正常。

最贴近真实事故的挤压测试

挤压测试用于模拟电池在交通事故时受到挤压的情况,随着电池变形程度的增加,正负极集流体会首先被撕裂。在短路点产生非常大的电流,热量集中释放,引起短路点的温度急剧上升,因此很容易引发热失控,进而引起起火或爆炸。

与现实车祸事故最为贴近的挤压测试

在挤压测试找那个电池包外壳出现了明显的变形,内部结构被破坏,电芯被内部零部件刺破,出现高压短路,造成热失控。对于挤压测试的通过标准一般是不起火、不爆炸。而宁德时代的电池产品,甚至可以再挤压变形的情况下,继续正常工作。

在宁德时代的挤压试验中,施加给电池包的力是十吨。12米大巴车重量为7吨,加上乘客和行李的重量接近10吨,也就是说这至少可以模拟一辆12米大巴车撞击时的挤压。

结束语

自此经过数不清的复杂加工工艺和检测测试流程,一块印有CATL LOGO的成品车用电池单元终于诞生了,但是对于质量的把控来说这并没有结束,为了把控在日常使用时的质量和品质,所有的成品电池和电芯都有自己独一无二的编码,如果未来那块电池甚至那颗电芯出现故障,可以追溯到那条生产线甚至那一批原料。对于电池这种带有一定危险性的产品来说,质量永远是最重要的一环。

目前CATL已经形成了从原料的开采到后期回收,一套完善的链条体系。而与宝马、奔驰等国际企业的合作关系,再次证明了其产品的优势。产品的稳定性和好口碑,是取胜的关键,但在新能源行业当中逆水行舟不进则退,未来需要不断推出有市场竞争力的产品,才能始终挺立在业界最高峰。

值得期待

仅用不到七年时间,就从无名小卒蹿升至全球最大的动力电池公司,从0做到了1532亿市值,打败了松下、LG这些老牌巨头,长期给苹果提供电池,如今成为了锂电池行业内的老大。

宁德时代这只“独角兽”已经出巢,未来值得期待!

文章来源:直观学机械





文章标签:

iwata GS-01 | 飞宇g6 plus | google pixel 3XL | gopro hero | onkyo ns-6170 | 华硕rog g703 | lg v30s | gfx50r | SX740 HS | vivonex星迹版 | v-moda remix | iPhone XS | dmc-fx500 | ATH-DSR5BT | ryzen 32200ge | canon g7x | madgaze x5 | Intel H310C | Klipsch X20i | Nikon D500 | rayo r4 | nokia8 sirocco | fs700 | H310C | GL503VS | sx740 hs | peak design | xz3 compact | amd b450 | 松下fz2500 | HTC UUltra | MINT TL70 | Artisul D16 | Lumix GX9 | EF 200-600mm | sony a6300 | lg v40 | instant magny | 8x max | Table Z2 | ux331ual | nikonZ6 | TG-Tracker | yashica35 | nikon d3500 | Zotac MEK1 | EF-M32 | xpg spectrix | helio a22 | rog g703 | Xperia XZ3 | lg v30+ | sony A7000 | kirin 970 | IER-M9 | ux370ua | gear s3 | 2990WX | Laowa 24mm | oneplus 5t | lg g6+ | piega coax 711 | AirPods 2 | mrg g2000 | zte axon7 | iwata GS-01 | i99900k | htc u11+ | 8848m5 | SLT-A99V | lg g5 | oppo r9 | TY-AK1 | rtx 2080 | s8800 | FEIYUG6 Plus | Ryzen 5 | Aumeo Audio | VAIOs11 | 26 AF-2 | Ps4 pro | Parrot ANAFI | metz m400 | LG G7 | Leica M-E | voyager 4 | vivo x21i | nikon Z6 | iXM 100MP | poco f1 | mavic 2 | cats41 | note9 S pen | htc blot | LargeSense LS911 | PEP 572 | ty-ak1 | thieye i60+ | i7 8086k | lumia 940xl | sony a6000 | moto z3 | Dyson V10 | AMD 2990X | vivo y75s | am pro30 | gpu turbo | aps-c | a6300 aps-c | a6300 | 90mm Macro | rtx2080 | AF-P 70-300mm VR | gtx1180 | mtk6737 | Sony SBH90C | sbh90c | SUGARY12 | nexum aqua+ | ryzen3000 | dysonV10 | Prostereo H2 | msige73 | note9 | 360 n7 | lg q6 | gopro 7 | oppo r17 | oppo r17 pro | vivo x5 | r6 neckband | xa2 plus | cats60 | 华为p21 | nokia7 plus | lgv30 | LITHRONE G37 | dmp z1 | M1803E6E | leagoo s10 | tab s4 | aftershokz | mad gaze x5 | xps 13 | int 2228 | DP-UB9000 | ie800s评测 | h370 | FINsix | asus fx504 | IMX309AQJ | mix2s AI相机 | 松下GH3 | B360主板 | Aurex TY-AK1 | 尼康28-300 | FE-Mount | agmx3 | 华为maters | vivoy75s | 150-400mm Pro | eos1100D | 魅族x8 | Fz2500 | msige73评测 | Dell XPS 132018 | Mate20 | sonyWI-SP500 | piegacoax711 | SonySBH90C | Kanton DX35 | lyratrio评测 | SocialMapper | note10 vivonex | B450 store MI | Elf Open Go | VersaceUnique | 飞宇g6plus | 技嘉H310 | 技嘉B360 | lx100ii | HIMO助力自行车 | Metz 26AF-2 | nikon p1000 | gopro fusion | camfi pro | FastFoto FF-680W | X-Trans cmos | af-p70-300 | Nikon af-p70-300 | MOE轮胎 | breakthrough滤镜 | applestore电视墙 | moto p30 | int 2228 | pubg mobile模拟器 | LargeSense | LargeSense LS911 | LargeSense | GandCrab4.0 | sunmobile | 16TH | 16TH 16THP | ux390 | ux490 | durakey | SONY DMP-Z1 | IER-Z1R | DMP-Z1 | entune3.0 | Ryzen52400G | Kanton DX35 | Ultimate Lens Hood | lgg7 hifi | elfopengo | Meltano | 4G-AC68U | dell cinema | 56Gpam4 | G7ThinQ | 72700x | NS-6170 | nove3 | sega | lgg7+ | nissin i60 | g703bi | fortnite | mqa 2L | R52400g | low-code | APP Obscura 2 | IBM groupon | acoustune | blincam眼镜 | iOS12.0Beta5 | 16A5339E | ambie wireless | NanoSound | pccw csl | RDMA技术原理 | Veydra | BWM Turbo Concept | snapdragon NPU120 | vGPU | cats60 | 锐龙r32200g | V30+ | neptune convertible | rog g703 | BitoPro | Metabones Speedbooster | Instant Magny 35 | CNVi | RNG纪念键帽 | Lastolite | 耳机 | mavic 2 | bigquery ml | nexstgo | RHEL7.5 | r32200g | Nokia | 联想z5 | oppo r15 | VIVONEX | coin otaku | ELF OpenGo | iPhone 9 | Surface Go | Galaxy Note8 256G | Intel CNVi | Nexstgo PRIMUS | pep572 | i78700 | i78700K | i7 8700 | i7 8700k